skip to main content


Search for: All records

Creators/Authors contains: "Kahveci, Tamer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Lengauer, Thomas (Ed.)
    Abstract Summary

    Target identification by enzymes (TIE) problem aims to identify the set of enzymes in a given metabolic network, such that their inhibition eliminates a given set of target compounds associated with a disease while incurring minimum damage to the rest of the compounds. This is a NP-hard problem, and thus optimal solutions using classical computers fail to scale to large metabolic networks. In this article, we develop the first quantum optimization solution, called QuTIE (quantum optimization for target identification by enzymes), to this NP-hard problem. We do that by developing an equivalent formulation of the TIE problem in quadratic unconstrained binary optimization form. We then map it to a logical graph, and embed the logical graph on a quantum hardware graph. Our experimental results on 27 metabolic networks from Escherichia coli, Homo sapiens, and Mus musculus show that QuTIE yields solutions that are optimal or almost optimal. Our experiments also demonstrate that QuTIE can successfully identify enzyme targets already verified in wet-lab experiments for 14 major disease classes.

    Availability and implementation

    Code and sample data are available at: https://github.com/ngominhhoang/Quantum-Target-Identification-by-Enzymes.

     
    more » « less
  3. null (Ed.)
    Large sequencing projects, such as GenomeTrakr and MetaSub, are updated frequently (sometimes daily, in the case of GenomeTrakr) with new data. Therefore, it is imperative that any data structure indexing such data supports efficient updates. Toward this goal, Bannai et al. (TCS, 2020) proposed a data structure named dynamic r-index which is suitable for large genome collections and supports incremental construction; however, it is still not powerful enough to support substantial updates. Here, we develop a novel algorithm for updating the r-index, which we refer to as RIMERGE. Fundamental to our algorithm is the combination of the basics of the dynamic r-index with a known algorithm for merging Burrows-Wheeler Transforms (BWTs). As a result, RIMERGE is capable of performing batch updates in a manner that exploits parallelism while keeping the memory overhead small. We compare our method to the dynamic r-index of Bannai et al. using two different datasets, and show that RIMERGE is between 1.88 to 5.34 times faster on reasonably large inputs. 
    more » « less