skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kahveci, Tamer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Drug resistance is one of the fundamental challenges in modern medicine. Using combinations of drugs is an effective solution to counter drug resistance as is harder to develop resistance to multiple drugs simultaneously. Finding the correct dosage for each drug in the combination remains to be a challenging task. Testing all possible drug-drug combinations on various cell lines for different dosages in wet-lab experiments is infeasible since there are many combinations of drugs as well as their dosages yet the drugs and the cell lines are limited in availability and each wet-lab test is costly and time-consuming. Efficient and accurate in silico prediction methods are surely needed. Here we present a novel computational method, PartialFibers to address this challenge. Unlike existing prediction methods PartialFibers takes advantage of the distribution of the missing drug-drug interactions and effectively predicts the dosage of a drug in the combination. Our results on real datasets demonstrate that PartialFibers is more flexible, scalable, and achieves higher accuracy in less time than the state of the art algorithms. 
    more » « less
  2. Abstract Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high throughput. These efforts have facilitated understanding of compound mechanism of action, drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering– and deep learning–based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field. 
    more » « less
  3. Lengauer, Thomas (Ed.)
    Abstract SummaryTarget identification by enzymes (TIE) problem aims to identify the set of enzymes in a given metabolic network, such that their inhibition eliminates a given set of target compounds associated with a disease while incurring minimum damage to the rest of the compounds. This is a NP-hard problem, and thus optimal solutions using classical computers fail to scale to large metabolic networks. In this article, we develop the first quantum optimization solution, called QuTIE (quantum optimization for target identification by enzymes), to this NP-hard problem. We do that by developing an equivalent formulation of the TIE problem in quadratic unconstrained binary optimization form. We then map it to a logical graph, and embed the logical graph on a quantum hardware graph. Our experimental results on 27 metabolic networks from Escherichia coli, Homo sapiens, and Mus musculus show that QuTIE yields solutions that are optimal or almost optimal. Our experiments also demonstrate that QuTIE can successfully identify enzyme targets already verified in wet-lab experiments for 14 major disease classes. Availability and implementationCode and sample data are available at: https://github.com/ngominhhoang/Quantum-Target-Identification-by-Enzymes. 
    more » « less